 PGVector
PGVector
PGVector Embedding Store
yaml
type: "io.kestra.plugin.ai.embeddings.PGVector"Examples
Ingest documents into a PGVector embedding store
yaml
id: document_ingestion
namespace: company.ai
tasks:
  - id: ingest
    type: io.kestra.plugin.ai.rag.IngestDocument
    provider:
      type: io.kestra.plugin.ai.provider.GoogleGemini
      modelName: gemini-embedding-exp-03-07
      apiKey: "{{ kv('GEMINI_API_KEY') }}"
    embeddings:
      type: io.kestra.plugin.ai.embeddings.PGVector
      host: localhost
      port: 5432
      user: "{{ kv('POSTGRES_USER') }}"
      password: "{{ kv('POSTGRES_PASSWORD') }}"
      database: postgres
      table: embeddings
    fromExternalURLs:
      - https://raw.githubusercontent.com/kestra-io/docs/refs/heads/main/content/blogs/release-0-24.md
Properties
database *Requiredstring
The database name
host *Requiredstring
The database server host
password *Requiredstring
The database password
port *Requiredintegerstring
The database server port
table *Requiredstring
The table to store embeddings in
user *Requiredstring
The database user
useIndex booleanstring
 Default 
falseWhether to use use an IVFFlat index
An IVFFlat index divides vectors into lists, and then searches a subset of those lists closest to the query vector. It has faster build times and uses less memory than HNSW but has lower query performance (in terms of speed-recall tradeoff).
